1. Azure Storage
Azure IaaS is designed for high-end workloads and will automatically scale up or down to 1000 instances. For existing virtualization pros, the learning curve is minimal as Azure runs on most Windows or Linux-based workloads.
- Durable and highly available:
Redundancy ensures that your data is safe in the event of transient hardware failures. You can also opt to replicate data across data centers or geographical regions for additional protection from local catastrophe or natural disaster. Data replicated in this way remains highly available in the accident of an unexpected outage. - Secure:
All data was written to Azure Storage is encrypted by the service. Azure Storage provides you with fine-grained control over who has a permission to access your data. - Scalable:
Azure Storage is designed to be densely scalable to meet the data storage and performance of applications. - Managed:
Microsoft Azure handles hardware maintenance, updates, and critical issues for you. - Accessible:
Data in Azure Storage is accessible from anywhere in the world over HTTP or HTTPS. Microsoft provides SDKs for Azure Storage in a variety of languages — .NET, Java, Node.js, Python, PHP, Ruby, Go, and others — as well as a mature REST API. Azure Storage supports scripting in Azure PowerShell or Azure CLI. And the Azure portal and Azure Storage Explorer offer easy visual solutions for working with your data.
2. Disk Storage:
An Azure managed disk is a virtual hard disk (VHD). You can think of it like a physical disk in an on-premises server but, virtualized. Azure managed disks are stored as page blobs, which are a random IO storage object in Azure. We call a managed disk ‘managed’ because it is an abstraction over page blobs, blob containers, and Azure storage accounts. With managed disks, all you have to do is provision the disk, and Azure takes care of the rest.
3. Azure Blob Storage:
Azure Blob storage is Microsoft’s object storage solution for the cloud. Blob storage is optimized for storing massive amounts of unstructured data, such as text or binary data.
Blob storage is ideal for:
- Serving images or documents directly to a browser.
- Storing files for distributed access.
- Streaming video and audio.
- Storing data for backup and restore, disaster recovery, and archiving.
- Storing data for analysis by an on-premises or Azure-hosted service.
Objects in Blob storage can be accessed from anywhere in the world via HTTP or HTTPS.
4. Azure Files:
Azure Files enables you to set up highly available network file shares that can be accessed by using the standard Server Message Block (SMB) protocol. That means that multiple VMs can share the same files with both read and write access. You can also read the files using the REST interface or the storage client libraries
File shares can be used for many common scenarios:
- Many on-premises applications use file shares. This feature makes it easier to migrate those applications that share data to Azure. If you mount the file share to the same drive letter that the on-premises application uses, the part of your application that accesses the file share should work with minimal, if any, changes.
- Configuration files can be stored on a file share and accessed from multiple VMs. Tools and utilities used by multiple developers in a group can be stored on a file share, ensuring that everybody can find them, and that they use the same version.
- Diagnostic logs, metrics, and crash dumps are just three examples of data that can be written to a file share and processed or analyzed later.
5. Encryption at REST:
Azure Storage Service Encryption (SSE) at rest helps you protect and safeguard your data to meet your organizational security and compliance commitments. With this feature, Azure Storage automatically encrypts your data prior to persisting to storage and decrypts prior to retrieval. The encryption, decryption, and key management are totally transparent to users.